智能客服集群减压

作者: AI智能系统研发事业部 日期: 2016-10-19 13:31:51 人气: - 评论: 0

智能客服已经很大程度上减轻了人工客服的压力,但是能否更进一步解决智能客服机器人的压力成为当前我们思考的问题。

通过人工智能技术在用户与机器人交互前对用户意图进行预测,并以主动或被动服务的方式帮助用户解决当前遇到问题。

目前算法部分的核心能力,如下图,不同的业务场景我们会组装不同的算法能力,比如热线的订单预测(用户识别+订单定位),在线小蜜的问题预测(意图分流+订单定位+召回预测+目标预测),每个子模块这里就不做过多的描述。

通常的算法技术主要通过分类问题或排序问题来解,之前我们也尝试了相对较基础的特征工程+RF的方式以及W&D的模型,另外上图的不同能力模块中,我们也尝试了label-lda/xgboost等算法,因为整个预测平台算法技术模块划分相对较多,今天我们的分享主要围绕问题预测进行,本章节我们核心介绍近几个月在问题预测方面的一些进展,具体当前线上的问题预测模型可以参考下面的表格(MV-DSSM正在对比中)。

我们核心围绕deep-ctr的方式支撑业务,具体在不同的业务中对比或上线了DeepFM、PNN(IPNN)、DCN三个模型。以DCN为例,作为对Wide & Deep的扩展,DCN模型可以有效学习大规模的稀疏和稠密特征,能够以较低的计算开销(参数较少),有效抓住特征间的交叉关系。下图为文献中网络结构图:

对DeepCTR系列算法做了一些改进。为了使DeepCTR模型更具通用性,我们参考了Kaggle竞赛:Mercari Price Suggesion中4th方案的做法,具体包括:


  • input层同时支持One-hot + Multi-hot特征;

  • 使用2vect算法独立训练词向量;

  • 加入文本embedding层;



强化学习


近期我们正在和计算平台的团队合作,基于deep-ctr的base模型(特征空间较大,但是训练时间较长更新较慢),结合drl做reranking(根据ctr-score以及实时线上的一些反馈数据,通过构建sequential的排序方式进行episode建模),强化点击率/解决率/满意率等目标。

流计算


既然我们有了问题预测的能力,很容易联想到为什么我们要等用户进入我们的服务渠道我们才预测呢?为什么我们不在用户使用淘宝的时候实时监控用户日志,主动预测用户的问题并第一时间发送消息触达到用户,提醒用户来阿里小蜜我们可以帮助解决他的问题。这就需要借助流计算的能力。

整体功能包含算法流式引擎、取数、特征工程、模型训练、算法灰度、在线评测、自动降级以及自动上线等,提供各类预测服务的一体化平台。当前阶段的重点工作主要在算法能力模块化(通过可串联、可编排的算法流式引擎,实现算法能力复用,快速响应业务,快速验证算法效果)、统一数据源及特征工程(可使算法同学专注算法实现,验证算法效果)、统一算法服务管理及模型评测(避免算法评测代码重复开发)、算法服务自动化更新(提升模型发布效率,保证模型的时效性)、线上推荐点击数据自动回流(通过线上数据反哺模型,提升模型效果)。


相关内容

发表评论
更多 网友评论0 条评论)
暂无评论

Copyright © 2012-2014 苏州子阳科技有限责任公司 Inc. 保留所有权利。 Powered by TWCMS 2.0.3

页面耗时0.0806秒, 内存占用1.06 MB, 访问数据库15次

苏ICP备17040421